Spin Transport in Epitaxial Heusler Alloy/III-V Semiconductor Heterostructures

Kevin D. Christie, Chad Geppert, Tim Peterson, Changjiang Liu, Gordon Stecklein, Paul A. Crowell
School of Physics and Astronomy
University of Minnesota

Sahil J. Patel, Mihir Pendharkar, Chris J. Palmstrøm
Dept. of Electrical and Computer Engineering, Dept. of Materials
University of California Santa Barbara
Outline

• Why lateral spin valves
• Why Heuslers: the Co$_2$Fe$_x$Mn$_{1-x}$Si family
• Progress in semiconductor lateral spin valves
• Improvements in high temperature performance
• Microwave detection of spin accumulation
Lateral spin valve

- Allows the study of spin-physics in wide array of materials systems
 - ferromagnetic contacts (Fe, Co, Py, Co$_2$MnSi, etc.)
 - metallic channels (Al, Cu, Ag, etc.); $p \ll 1\%$
 - semiconducting channels (GaAs, Si, Ge, graphene, etc.)
- Can quantify injection rates, detection efficiencies, spin-lifetimes, etc.

\[p_{inj} \approx 50\% \]
\[\lambda_s \approx 5 \mu m \]
The non-local measurement

- No charge current flows in F2.
- The electrochemical potential is measured for each state of F2 (seemingly straight-forward).
- The (less than 100%) polarization of F2 reduces the signal from the ideal value.
- F2 draws a spin current. This can perturb N (irrelevant in this system)
Outline

• Why lateral spin valves

• Why Heuslers: the Co$_2$Fe$_x$Mn$_{1-x}$Si family

• Progress in semiconductor lateral spin valves

• Improvements in high temperature performance

• Microwave detection of spin accumulation
Co$_2$MnSi – a potential half-metal

- Predicted to be a half-metal with a relatively large minority gap
- Lattice-matched to GaAs
Co$_2$MnSi – a potential half-metal

- Predicted to be a half-metal with a relatively large minority gap
- Lattice-matched to GaAs
- Spin injection will work [see Dong et al., Appl. Phys. Lett. 86, 102107 (2006) for Co$_2$MnGe/GaAs]
General idea: Fermi level in a rigid band model

Can we tune the Fermi level through the minority spin gap?

Heusler alloy: Co_2MnSi

Co_2MnSi

- L2$_1$ ordered
- $T_c = 985 \text{ K}$
- $M_{\text{sat}} = 4.97 \mu_B$

Near perfect lattice match to GaAs

$a = 5.65 \text{ Å}$

(STEM courtesy of Paul Voyles, UW Madison)
Useful features of these alloys

- As indicated by work on MTJ’s, the tunneling polarization is high; Co_2MnSi is half-metallic or nearly so.

- As suggested by the cartoons on the previous viewgraphs, the density of states at the Fermi level is relatively small. This is a corollary to the fact that E_F changes so rapidly with composition.

- Grown on (100) GaAs, they have a very large in-plane uniaxial anisotropy. This turns out to be of practical utility.

- The LLG damping is particularly small for Co_2MnSi (~ 0.003 at high temperatures)
Outline

• Why lateral spin valves

• Why Heuslers: the Co$_2$Fe$_x$Mn$_{1-x}$Si family

• Progress in semiconductor lateral spin valves

• Improvements in high temperature performance

• Microwave detection of spin accumulation
FM/n-GaAs Heterostructures

- Epitaxially grown along [001]
- Fe polarization at Fermi level $\approx 40\%$
- Co_2MnSi proposed to be half-metallic
- Surface-induced FM anisotropy

- Graded doping used to ‘thin’ natural forming Schottky barrier
- Interface states lead to complex bias dependence
Lateral spin valve

\(\Delta V (\mu V) \) vs. Field (Oe) for different conditions:

- **unbiased (non-local)**
 - \(\Delta V \) shows a response to the field for \(Co_2MnSi \) and appears to be independent of the presence of Fe.

- **biased (non-local)**
 - \(\Delta V \) shows a pronounced response to the field and is sensitive to the presence of Fe.

The diagram illustrates the effect of a magnetic field \(H \) on the voltage \(\Delta V \) for different materials and conditions.
Spin drift-diffusion model

DIFFUSION CONSTANT – Same for spin and charge?

\[eD = \nu n \frac{\partial \mu}{\partial n} \]

(Einstein relation)

\[\frac{\partial \mathbf{p}}{\partial t} = \nu E \frac{\partial \mathbf{p}}{\partial x} + D \frac{\partial^2 \mathbf{p}}{\partial x^2} - \frac{\gamma \mathbf{B} \times \mathbf{p}}{\tau_s} + \frac{\mathbf{p}}{\tau_s} + \mathbf{p}_0 \]

SPIN LIFETIME – Reasonable values for n-GaAs?

\[\tau_s^{-1} \propto \alpha^2 \varepsilon^3 \tau_p \]

(Dyakonov-Perel)

- \(D \): diffusion constant
- \(\tau_s \): spin lifetime
- \(\mathbf{p} \): fractional number polarization
- \(E \): electric field
- \(\nu \): drift mobility
- \(\gamma \): gyromagnetic ratio
- \(\mathbf{B} \): magnetic field
- \(\varepsilon \): electron energy
- \(\alpha \): spin-orbit prefactor (Dresselhaus)
- \(\tau_p \): momentum relaxation time

steady state

relaxation

injection rate

Larmor precession

drift & diffusion
The full time of flight experiment: add drift

\[g^* = 0 \]

- Solid curves are the analytic solution
Non-local Hanle fitting

- Multiple biases at each temperature fit with a single set of parameters
- Hanle curves with ‘lobes’ allow extraction of diffusion constant
Spin lifetime and diffusion constant

- Allowing D to be a fitting parameter yields values in agreement with the Einstein relation: spin and charge diffusion constants are the same.
- Larger uncertainty at higher temperatures due to disappearance of ‘lobes’
Estimates of the spin polarization

We can set a lower bound for the spin-polarization if we assume a perfect detection efficiency ($\eta = 1$)

$$ n_{\uparrow(\downarrow)} = \int_{E_f \pm e\Delta V_{\uparrow(\downarrow)}} g(E) dE $$

$$ p = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} = 60\% $$

The measured spin splitting ΔV is half of the Fermi energy $E_f = 5$ meV

$T = 30$ K
Sign of the spin accumulation by Hanle measurements

Exploit hyperfine coupling:

\[\Delta V (\mu V) \]

\[\text{Field (mT)} \]

\[\text{Co}_2 \text{MnSi/GaAs} \]

\[\text{majority spin accumulation} \]

\[B_N \]

\[60 \text{ K} \]

\[\text{Co}_2 \text{FeSi/GaAs} \]

\[B_N \]

\[40 \text{ K} \]

\[\text{minority spin accumulation} \]

Sign of the spin polarization in the bulk GaAs can be determined in the presence of a hyperfine field

\[\vec{B}_{tot} = \vec{B} - b_H \frac{\vec{S} \cdot \vec{B}}{B^2} \vec{B} \]
Co$_2$Mn$_{1-x}$Fe$_x$Si: comparison with Fe

- Polarizations determined by “biased detector technique”
- Sign determined by hyperfine field
- Sign change in going from Co$_2$MnSi to Co$_2$FeSi is expected, but overall sign is \textit{backwards}
Interlude: (Scalar) Spin EMF

- Expand chemical potentials w.r.t. p:

$$\mu_{\uparrow(\downarrow)} \approx \mu_0 + (-) \frac{\partial \mu}{\partial n} np + \frac{\partial^2 \mu}{\partial n^2} n^2 p^2$$

asymmetric shift: $\Delta \mu_{avg}$

- Current in each spin-channel:

$$\vec{j}_{\uparrow(\downarrow)} = n_{\uparrow(\downarrow)} \nu \nabla \left[\mu_{\uparrow(\downarrow)} - e\Phi \right]$$

- Result:

$$\vec{j} = \sigma \nabla \left(kp^2 - \Phi \right)$$

$$k = \frac{1}{2e} \left(\frac{\partial \mu}{\partial n} n + \frac{\partial^2 \mu}{\partial n^2} n^2 \right) = \frac{2 E_f}{9 e}$$
Quadratic dependence

\[\Delta V_{CH} \propto p^2 \]

Log-log plot of magnitudes demonstrates quadratic dependence

Deviation at large bias due to large E-field at injector (drift effects)
Dual-injector experiment

- Spins injected simultaneously at FM contacts B and D
- Clear spin valve signals observed at contact C
- Low-field features due to hyperfine interactions

Polarization vs. Temperature

\[p_{\text{inj}} = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} \]

- For \(p > 0.3 \), need to account for ‘Thompson’ effect: \(k = k(p) \)
- Results are independent of any assumptions about interfacial spin injection/detection efficiencies
- This resolved the “three-terminal” discrepancy
Outline

• Why lateral spin valves

• Why Heuslers: the $\text{Co}_2\text{Fe}_x\text{Mn}_{1-x}\text{Si}$ family

• Progress in semiconductor lateral spin valves

• Improvements in high temperature performance

• Microwave detection of spin accumulation
What about room temperature?

- **Biased detector**

 \[\Delta V_{NL} = \eta(I_{det}) \frac{P(I_{inj})n}{e} \frac{\partial \mu}{\partial n} \]

- \(\Delta V_{NL} \) is linear in spin injection rate, \(I_{inj} \), with fixed non-zero detector bias \(I_{det} \).

- \(\Delta V_{NL} \) becomes larger with detector bias \(I_{det} \), which we interpret as a detector bias dependence of \(\eta \rightarrow \eta(I_{det}) \).

- We also see saturation of \(\Delta V_{NL} \) at large \(I_{det} \).
Complication: Tunneling AMR (TAMR)

\[\frac{e}{(2\pi)^3 \hbar} \sum_{\sigma} \int dE d^2k_T(E,k) [f_F(E_\sigma) - f_N(E)] \]

\[T_{\text{aniso}} \propto \sin^2(\theta) [f(\alpha, \gamma) + g(\alpha, \gamma) \cos(2\phi)] \]

\[\alpha: \text{Rashba spin-orbit coupling constant} \]
\[\gamma: \text{Dresselhaus spin-orbit coupling constant} \]

\[R = R_0 + \Delta R_{\text{in}} \sin^2(\theta) \cos^2(\phi) + \Delta R_{\text{out}} \sin^2(\theta) \]

A. Matos-Abiague et al., PRB, 80, 045312 (2009)
K. Wang et al., PRB, 88, 054407 (2013)
Ramifications for a biased detector

- *Any* contact rotation leads to a TAMR contribution to the “three-terminal” signal; i.e. an additional field-dependent voltage at the detector. This is large and only weakly temperature-dependent.

- The ratio of the uniaxial to fourfold anisotropies is larger in Co$_2$Mn$_{1-x}$Fe$_x$Si than in Fe. This makes the Heuslers very forgiving.

La Bella *et al.*, PRL 83, 2989 (1999).
Devices operating at room temperature

- Use of Co$_2$FeSi as injector/detector
- Electron beam lithography
- Performance today comparable to low-T performance as of a few years ago (particularly size of non-local voltage)
- Spin diffusion length at 300 K is ~ 800 nm
Temperature dependence

We fit to the steady state solution of the drift-diffusion equation to extract the spin relaxation time constant τ_s.

\[
\frac{dP}{dt} = 0 = -\frac{P}{\tau_s} + \nabla^2 P - v \nabla P + F
\]

This allows us to determine the spin diffusion length λ.

By measuring the separation dependence, we extract the spin diffusion length λ.

Temperature dependence, separation dependence, fitted τ_s (ns), temperature (K), separation (μm), fitted τ_s (ns), temperature (K), separation (μm).
Outline

• Why lateral spin valves
• Why Heuslers: the $\text{Co}_2\text{Fe}_x\text{Mn}_{1-x}\text{Si}$ family
• Progress in semiconductor lateral spin valves
• Improvements in high temperature performance
• Microwave detection of spin accumulation
What about Hanle measurements?

- Conventional wisdom: these become difficult or impossible at high temperatures because the lifetime is “too short”

- This is reinforced by the fact that the g-factor in GaAs is so small (i.e. -0.44 instead of 2)

- Ordinary magnetoresistance is very large
Hanle measurement at room temperature fails

- Signal/Background $\sim 10^{-4}$
- Impossible to extract spin signal at room temperature in n-GaAs system
What about Hanle measurements?

- Conventional wisdom: these become difficult or impossible at high temperatures because the lifetime “is too short”

- This is reinforced by the fact that the g-factor in GaAs is so small (i.e. -0.44 instead of 2)

- Ordinary magnetoresistance is very large

- Solution: use the Hanle concept (sensitivity to precession), but exploit the fact that spins can precess in the FM as well as the semiconductor.
Solution: modulate the injector with FMR

- This is a three-terminal measurement with microwave excitation
- Signal is the difference of the 3T signal with and without microwave field

Cap
- FM

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^+: GaAs</td>
<td>$n \sim 5 \times 10^{18}/\text{cm}^3$</td>
<td>(18 nm)</td>
</tr>
<tr>
<td>$n \rightarrow n^+$: GaAs</td>
<td></td>
<td>(15 nm)</td>
</tr>
<tr>
<td>n: GaAs</td>
<td>$n \sim 3 \times 10^{16} \text{ cm}^{-3}$</td>
<td>(5 nm)</td>
</tr>
<tr>
<td>i-GaAs [001]</td>
<td></td>
<td>(~ 2500 nm)</td>
</tr>
</tbody>
</table>

FM: Co$_2$MnSi, Co$_2$FeSi, Fe

Skipping details...

FM is denoted by a shielded circle, and H_0 is the magnetic field.
Spin accumulation leads to an FMR peak in ΔV

- A strong resonance peak is observed (note the sign is negative)
- The peak position is well described by the Kittel's formula

At forward bias, the FMR signal is dominated by spin accumulation

Linewidth determined by $\alpha \sim 0.003$ for Co$_2$MnSi at room temperature
Modeling FMR spin detection

\[V = \eta I_s \int_{-\infty}^{t} \hat{m}(t) \cdot \hat{s}(t') \frac{1}{\sqrt{2\pi D(t - t')}} e^{-\frac{t-t'}{\tau_s}} dt' \]

\[V_{FMR} = \eta I_s \frac{1}{2} (\varphi_{in}^2 + \varphi_{out}^2) \sqrt{\frac{\tau_s}{2D}} \left(\sqrt{\frac{1}{2\sqrt{1 + \omega^2 \tau_s^2}}} + \frac{1}{2(1 + \omega^2 \tau_s^2)} - 1 \right) \]

- \(I_s \): Spin injection current
- \(\eta \): Detection efficiency
- \(D \): Spin diffusion constant
- \(\tau_s \): Spin lifetime
- \(\varphi_{in} \varphi_{out} \): Precession cone angles
Temperature dependence (comparison with NLSV)

- Agreement with spin-valve data for both Co$_2$FeSi and Co$_2$MnSi
Frequency dependence

- Spin lifetime extracted agrees with those obtained from spin-valve measurements.
- At high temperatures, this technique is much more sensitive than the conventional spin valve approach.
Summary

- $\text{Co}_2\text{Mn}_{1-x}\text{Fe}_x\text{Si}$ is a very effective spin injector/detector for GaAs

- The high polarization helps, although in our case the highest polarizations measured are about 70%.

- There are other features of these materials that are as “useful” as the high polarization.

- Lateral spin valves useful as quantitative tools up to room temperature.

- Microwave detection of spin accumulation is a complementary technique, particularly when τ_s is short.